ssh wanli@210.107.198.223
pw: xuewanli123
#check video card situation nvidia-smi
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=train_val.prototxt –weights=bvlc_alexnet.caffemodel –iterations 100
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=train_val.prototxt –weights=bvlc_alexnet.caffemodel –iterations 100
————— /home/jungmo/apps/caffe/build/tools/caffe.bin train -solver solver.prototxt —-gpu 0,1
/home/jungmo/apps/caffe/build/tools/caffe.bin train -solver /home/wanli/alexnet_otherdatast/solver_alexnet_cifar.prototxt -snapshot /home/wanli/alexnet_otherdatast/alex_cifar_iter_150000.solverstate —————
add import sys sys.path.append(“/home/jungmo/apps/caffe/python”) # caffe path before ‘import caffe’.
import sys sys.path.append(“/home/jungmo/apps/caffe/python”) import caffe
matlab h5disp(‘cifar10_full_iter_60000.caffemodel.h5’)
net = caffe.Net(‘/home/wanli/caffe_local/deploy.prototxt’, ‘/home/wanli/caffe_local/bvlc_alexnet.caffemodel’, caffe.TEST)
net = caffe.Net(‘/home/wanli/alexnet_otherdatast/deploy_cifar.prototxt’, ‘/home/wanli/alexnet_otherdatast/Alexnet_cifar.caffemodel’, caffe.TEST)
#if using deploy. need weight, if using train_val, assuming require data file
python extract.py –model=deploy.prototxt –weights=bvlc_alexnet.caffemodel –output=extract
python extract.py –model=cifar10_full_train_test.prototxt –weights=cifarfull10_iter_60000.caffemodel –output=cifar10_extract
import numpy as np np.load(“7x7_s2_0.npy”)
this cannot show the all and not easy to process.
we find a code turn npy to matlab code: https://github.com/kwikteam/npy-matlab
then process with matlab, sucessfully read the weight fc8_0.pny 1000x4096 b=readNPY(‘fc8_0.npy’); //matlab code
——————————modifying the parameter in weights———————————— 1st import paramater
import numpy as np import sys sys.path.append(“/home/jungmo/apps/caffe/python”) import caffe
#if using deploy. need weight, if using train_val, assuming require data file net = caffe.Net(‘/home/wanli/caffe_local/deploy.prototxt’, ‘/home/wanli/caffe_local/bvlc_alexnet.caffemodel’, caffe.TEST)
net = caffe.Net(‘/home/wanli/caffe_local/train_val.prototxt’, ‘/home/wanli/caffe_local/bvlc_alexnet.caffemodel’, caffe.TEST)
——
net = caffe.Net(‘/home/wanli/alexnet_otherdatast/cifar10_full_train_test.prototxt’, ‘/home/wanli/alexnet_otherdatast/cifarfull10_iter_60000.caffemodel’, caffe.TEST)
——— net = caffe.Net(‘/home/wanli/alexnet_otherdatast/train_val_alex_cifar.prototxt’, ‘/home/wanli/alexnet_otherdatast/Alexnet_cifar.caffemodel’, caffe.TEST) fc6 weights are (1024, 288) dimensional and biases are (1024,) dimensional fc7 weights are (1024, 1024) dimensional and biases are (1024,) dimensional fc8 weights are (27, 1024) dimensional and biases are (27,) dimensional
print(“blobs {}\nparams {}”.format(net.blobs.keys(), net.params.keys()))
net = caffe.Net(‘/home/wanli/caffe_local/modified_alexnet_train.prototxt’, ‘/home/wanli/caffe_local/bvlc_alexnet.caffemodel’, caffe.TEST)
2. W = net.params[‘conv1’][0].data[…] #print the weight of layer conv1
fc7=net.params[‘fc7’][0].data ———————————————————————
net = caffe.Net(‘/home/wanli/caffe_local/deploy.prototxt’, ‘/home/wanli/caffe_local/bvlc_alexnet.caffemodel’, caffe.TEST)
###net = caffe.Net(‘/home/wanli/caffe_local/alex_deploy_modified.prototxt’, ‘/home/wanli/caffe_local/wanli_alexnet.caffemodel’, caffe.TEST)
params = [‘fc6’, ‘fc7’, ‘fc8’] params = [‘fc6’, ‘fc6.5’, ‘fc7.1’, ‘fc8’]
fc_params = {name: (weights, biases)}
fc_params = {pr: (net.params[pr][0].data, net.params[pr][1].data) for pr in params}
for fc in params: print ‘{} weights are {} dimensional and biases are {} dimensional’.format(fc, fc_params[fc][0].shape, fc_params[fc][1].shape)
fc6 weights are (4096, 9216) dimensional and biases are (4096,) dimensional fc6.5 weights are (2000, 4096) dimensional and biases are (2000,) dimensional fc7.1 weights are (4096, 2000) dimensional and biases are (4096,) dimensional fc8 weights are (1000, 4096) dimensional and biases are (1000,) dimensional
用proto生成带有6.5层的caffemodel,然后在更改model的参数
根据net——surgery 可以直接用不同的.caffemodel 放在deploy.prototxt 里,有的layer会自动对应,没有的参数就为0,比如fc6.5和fc7.1,但是weight矩阵的纬度(方向)很奇怪。猜测是转换的。 并不是转换,而是weight在前面乘,所以先乘v再乘U. W = U*V
fc6_5=np.load(‘fc6_5.npy’) fc7_1=np.load(‘fc7_1.npy’)
new model parameter is: wanli_alexnet_update.caffemodel
so read the net become: net = caffe.Net(‘/home/wanli/caffe_local/alex_deploy_modified.prototxt’, ‘/home/wanli/caffe_local/wanli_alexnet_update.caffemodel’, caffe.TEST)
———————————— when testing, require the mean profile. I modified the create_mean.sh from CIFAR-10 example, to generate the mean. But came across error when running. solving try http://stackoverflow.com/questions/18172405/getting-error-usr-bin-env-sh-no-such-file-or-directory-when-running-command-p dos2unix create_alexnet_mean.sh (not working, directly modified cifar_10 create file is easier)
/home/jungmo/apps/caffe/build/tools/compute_image_mean -backend=lmdb
~/ilsvrc12_val_lmdb ~/alex_test_mean.binaryproto
(I failed because to make the mean file require the training dataset instead of validating dataset, so jungmo did it for me)
#validation command /home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/caffe_local/modified_alexnet_train.prototxt -weights /home/wanli/caffe_local/wanli_alexnet_update.caffemodel -gpu all -iterations 100
top-5 accuracy /home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/caffe_local/modified_alexnet_train_top5.prototxt -weights /home/wanli/caffe_local/wanli_alexnet_update.caffemodel -gpu all -iterations 100
/home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_train_test.prototxt -weights /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifarfull10_iter_60000.caffemodel -gpu all -iterations 100
raw# /home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/caffe_local/alex_train_val.prototxt -weights /home/wanli/caffe_local/bvlc_alexnet.caffemodel -gpu all -iterations 100
——————————— data structure:
HDF5 cifar10_full_iter_60000.caffemodel.h5 Group ‘/’ Group ‘/data’ Group ‘/data/cifar’ Group ‘/data/conv1’ Dataset ‘0’ Size: 5x5x3x32 MaxSize: 5x5x3x32 Datatype: H5T_IEEE_F32LE (single) ChunkSize: [] Filters: none FillValue: 0.000000 Dataset ‘1’ Size: 32 MaxSize: 32 Datatype: H5T_IEEE_F32LE (single) ChunkSize: [] Filters: none FillValue: 0.000000 Group ‘/data/conv2’ Dataset ‘0’ Size: 5x5x32x32 MaxSize: 5x5x32x32 Datatype: H5T_IEEE_F32LE (single) ChunkSize: [] Filters: none FillValue: 0.000000 Dataset ‘1’ Size: 32 MaxSize: 32 Datatype: H5T_IEEE_F32LE (single) ChunkSize: [] Filters: none FillValue: 0.000000 Group ‘/data/conv3’ Dataset ‘0’ Size: 5x5x32x64 MaxSize: 5x5x32x64 Datatype: H5T_IEEE_F32LE (single) ChunkSize: [] Filters: none FillValue: 0.000000 Dataset ‘1’ Size: 64 MaxSize: 64 Datatype: H5T_IEEE_F32LE (single) ChunkSize: [] Filters: none FillValue: 0.000000 Group ‘/data/ip1’ Dataset ‘0’ Size: 1024x10 MaxSize: 1024x10 Datatype: H5T_IEEE_F32LE (single) ChunkSize: [] Filters: none FillValue: 0.000000 Dataset ‘1’ Size: 10 MaxSize: 10 Datatype: H5T_IEEE_F32LE (single) ChunkSize: [] Filters: none FillValue: 0.000000 Group ‘/data/loss’ Group ‘/data/norm1’ Group ‘/data/norm2’ Group ‘/data/pool1’ Group ‘/data/pool2’ Group ‘/data/pool3’ Group ‘/data/relu1’ Group ‘/data/relu2’ Group ‘/data/relu3’
——————————— using normal solver alex_cifar_32_train_val.prototxt (raw alexnet model only change crop size to 32 and output class 10)
not work, error
————— using normal solver alex_para_modi_cifar.prototxt (raw alexnet model changed some layer dimension according to download file) crop size 31, each conv and fc layer got updated, output 10)
failed, after 150K iteration, accuracy only 0.1 ——————
/home/wanli/alexnet_otherdatast/cifar10_full_caffe/caffe_cifar10_suggery
separate caffe_cifar10_example ip1 to ip0.5 and ip1.1
10x1000 9x1000 10x9
net = caffe.Net(‘/home/wanli/alexnet_otherdatast/cifar10_full_caffe/caffe_cifar10_suggery/cifar10_full_train_test.prototxt’, ‘/home/wanli/alexnet_otherdatast/cifar10_full_caffe/caffe_cifar10_suggery/cifarfull10_iter_60000.caffemodel’, caffe.TEST)
—modifed separate to 2 layer without noise —10x1000 9x1000 10x9— /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_update.caffemodel –iterations 100 -gpu all
result: I0605 14:02:42.237463 7380 caffe.cpp:318] Loss: 0.741915 I0605 14:02:42.237478 7380 caffe.cpp:330] accuracy = 0.7546 I0605 14:02:42.237488 7380 caffe.cpp:330] loss = 0.741915 (* 1 = 0.741915 loss)
—— start to add dp noises to 2 layers—— (add to dictionary 10x9)———
————eps :1 /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_eps1.caffemodel –iterations 100 -gpu all
I0612 16:04:29.683989 15777 caffe.cpp:318] Loss: 38.7366 I0612 16:04:29.684002 15777 caffe.cpp:330] accuracy = 0.0908 I0612 16:04:29.684012 15777 caffe.cpp:330] loss = 38.7366 (* 1 = 38.7366 loss) ——————eps:5
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_eps5.caffemodel –iterations 100 -gpu all
I0612 15:53:39.294044 15470 caffe.cpp:318] Loss: 8.64625 I0612 15:53:39.294057 15470 caffe.cpp:330] accuracy = 0.1876 I0612 15:53:39.294085 15470 caffe.cpp:330] loss = 8.64625 (* 1 = 8.64625 loss)
——————eps:7 /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_eps7.caffemodel –iterations 100 -gpu all
I0612 16:06:37.046643 15848 caffe.cpp:318] Loss: 2.59091 I0612 16:06:37.046672 15848 caffe.cpp:330] accuracy = 0.4061 I0612 16:06:37.046700 15848 caffe.cpp:330] loss = 2.59091 (* 1 = 2.59091 loss)
——————eps:8.5 /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_eps8_5.caffemodel –iterations 100 -gpu all
I0612 16:09:09.899412 15954 caffe.cpp:318] Loss: 2.64174 I0612 16:09:09.899425 15954 caffe.cpp:330] accuracy = 0.48 I0612 16:09:09.899452 15954 caffe.cpp:330] loss = 2.64174 (* 1 = 2.64174 loss)
——eps :9
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_eps9.caffemodel –iterations 100 -gpu all
I0612 16:11:07.719035 16027 caffe.cpp:318] Loss: 1.88365 I0612 16:11:07.719050 16027 caffe.cpp:330] accuracy = 0.4778 I0612 16:11:07.719079 16027 caffe.cpp:330] loss = 1.88365 (* 1 = 1.88365 loss)
————eps :9.5
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_eps9_5.caffemodel –iterations 100 -gpu all
I0612 16:13:01.286469 16097 caffe.cpp:318] Loss: 1.21606 I0612 16:13:01.286507 16097 caffe.cpp:330] accuracy = 0.6697 I0612 16:13:01.286536 16097 caffe.cpp:330] loss = 1.21606 (* 1 = 1.21606 loss)
————eps: 10 /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_eps10.caffemodel –iterations 100 -gpu all
I0612 15:58:40.667547 15548 caffe.cpp:318] Loss: 1.1029 I0612 15:58:40.667562 15548 caffe.cpp:330] accuracy = 0.6676 I0612 15:58:40.667587 15548 caffe.cpp:330] loss = 1.1029 (* 1 = 1.1029 loss)
——eps : 15 /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_eps15.caffemodel –iterations 100 -gpu all
I0612 16:00:49.944980 15620 caffe.cpp:318] Loss: 0.897609 I0612 16:00:49.945008 15620 caffe.cpp:330] accuracy = 0.6981 I0612 16:00:49.945035 15620 caffe.cpp:330] loss = 0.897609 (* 1 = 0.897609 loss)
———raw———————————— /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=cifar10_full_train_test.prototxt –weights=cifarfull10_iter_60000.caffemodel –iterations 100 -gpu all
I0605 14:48:49.377022 7858 caffe.cpp:318] Loss: 0.648308 I0605 14:48:49.377035 7858 caffe.cpp:330] accuracy = 0.7841 I0605 14:48:49.377063 7858 caffe.cpp:330] loss = 0.648308 (* 1 = 0.648308 loss)
————add laplacian noise very big————— /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_ip1_2.caffemodel –iterations 100 -gpu all
I0605 16:46:06.148085 8118 caffe.cpp:318] Loss: 21.0641 I0605 16:46:06.148099 8118 caffe.cpp:330] accuracy = 0.1119 I0605 16:46:06.148126 8118 caffe.cpp:330] loss = 21.0641 (* 1 = 21.0641 loss)
————add small laplacian noise — eps 0.01—————— I0606 14:22:26.946291 9390 caffe.cpp:318] Loss: 0.756951 I0606 14:22:26.946305 9390 caffe.cpp:330] accuracy = 0.7498 I0606 14:22:26.946332 9390 caffe.cpp:330] loss = 0.756951 (* 1 = 0.756951 loss)
—————————add dp noise to training data—————————————— #########################
normalise data to [-1, +1] add noise, then normal back to train
/home/jungmo/apps/caffe/build/tools/compute_image_mean -backend=lmdb
/home/wanli/alexnet_otherdatast/cifar10_s121e0_5_data/cifar10_train_lmdb /home/wanli/alexnet_otherdatast/cifar10_s121e0_5_data/mean.binaryproto
————— add eps 20 sa = 1 normalised to check ———
/home/jungmo/apps/caffe/build/examples/cifar10/convert_cifar_data.bin /home/wanli/cifar10_newdata /home/wanli/alexnet_otherdatast/cifar10_s1e20_data lmdb
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_solver.prototxt –gpu all >/home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_s1e20.log &
I0618 19:27:48.423763 23658 data_layer.cpp:73] Restarting data prefetching from start. I0618 19:27:48.478471 23649 solver.cpp:398] Test net output #0: accuracy = 0.5 I0618 19:27:48.478495 23649 solver.cpp:398] Test net output #1: loss = 2.30259 (* 1 = 2.30259 loss)
/home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_train_test.prototxt -weights /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_noisetrain_iter_60000.caffemodel -gpu all -iterations 100
I0618 20:30:52.403015 24163 caffe.cpp:318] Loss: 2.30259 I0618 20:30:52.403029 24163 caffe.cpp:330] accuracy = 0.5 I0618 20:30:52.403041 24163 caffe.cpp:330] loss = 2.30259 (* 1 = 2.30259 loss)
———add eps 5 sa =1 normalised to check———————— /home/jungmo/apps/caffe/build/examples/cifar10/convert_cifar_data.bin /home/wanli/cifar10_newdata /home/wanli/alexnet_otherdatast/cifar10_s1e5_data lmdb
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_solver.prototxt –gpu all >/home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_s1e5.log &
I0617 15:24:06.543901 17406 solver.cpp:311] Iteration 60000, loss = 2.3026 I0617 15:24:06.543923 17406 solver.cpp:331] Iteration 60000, Testing net (#0) I0617 15:24:07.862299 17416 data_layer.cpp:73] Restarting data prefetching from start. I0617 15:24:07.915101 17406 solver.cpp:398] Test net output #0: accuracy = 0.1 I0617 15:24:07.915127 17406 solver.cpp:398] Test net output #1: loss = 2.30259 (* 1 = 2.30259 loss)
————add eps 1 sa =1 normalised to check————
/home/jungmo/apps/caffe/build/examples/cifar10/convert_cifar_data.bin /home/wanli/cifar10_newdata /home/wanli/alexnet_otherdatast/cifar10_s1e1_data lmdb
/home/jungmo/apps/caffe/build/examples/cifar10/convert_cifar_data.bin /home/wanli/cifar10_newdata /home/wanli/alexnet_otherdatast/cifar10_s1e1_data lmdb
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_solver.prototxt –gpu all >/home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_s1e1.log &
I0609 19:41:56.410487 29271 solver.cpp:311] Iteration 60000, loss = 0.795319 I0609 19:41:56.410526 29271 solver.cpp:331] Iteration 60000, Testing net (#0) I0609 19:41:57.748481 29280 data_layer.cpp:73] Restarting data prefetching from start. I0609 19:41:57.801019 29271 solver.cpp:398] Test net output #0: accuracy = 0.4431 I0609 19:41:57.801046 29271 solver.cpp:398] Test net output #1: loss = 2.0495 (* 1 = 2.0495 loss)
/home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_train_test.prototxt -weights /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_noisetrain_iter_60000.caffemodel -gpu all -iterations 100
I0617 16:55:14.821965 18361 caffe.cpp:318] Loss: 2.30259 I0617 16:55:14.821979 18361 caffe.cpp:330] accuracy = 0.5 I0617 16:55:14.822005 18361 caffe.cpp:330] loss = 2.30259 (* 1 = 2.30259 loss)
图片更加模糊了但是精确度上升了
————add eps 0.5 sa =1 normalised to check————
/home/jungmo/apps/caffe/build/examples/cifar10/convert_cifar_data.bin /home/wanli/cifar10_newdata /home/wanli/alexnet_otherdatast/cifar10_s1e0_5_data lmdb
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_solver.prototxt –gpu all >/home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_s1e0_5.log &
I0617 17:43:29.879876 18463 solver.cpp:311] Iteration 60000, loss = 2.3026 I0617 17:43:29.879911 18463 solver.cpp:331] Iteration 60000, Testing net (#0) I0617 17:43:31.203712 18472 data_layer.cpp:73] Restarting data prefetching from start. I0617 17:43:31.256686 18463 solver.cpp:398] Test net output #0: accuracy = 0.5 I0617 17:43:31.256713 18463 solver.cpp:398] Test net output #1: loss = 2.30259 (* 1 = 2.30259 loss)
/home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_train_test.prototxt -weights /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_noisetrain_iter_60000.caffemodel -gpu all -iterations 100
有问题 参数没更改
—————add eps 0.1 sa = 1 normalised to check——— /home/jungmo/apps/caffe/build/examples/cifar10/convert_cifar_data.bin /home/wanli/cifar10_newdata /home/wanli/alexnet_otherdatast/cifar10_s1e0_1_data lmdb
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_solver.prototxt –gpu all >/home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_s1e0_1.log &
I0617 18:29:56.213620 18742 solver.cpp:311] Iteration 60000, loss = 2.3026 I0617 18:29:56.213641 18742 solver.cpp:331] Iteration 60000, Testing net (#0) I0617 18:29:57.539074 18751 data_layer.cpp:73] Restarting data prefetching from start. I0617 18:29:57.593412 18742 solver.cpp:398] Test net output #0: accuracy = 0.5 I0617 18:29:57.593437 18742 solver.cpp:398] Test net output #1: loss = 2.30259 (* 1 = 2.30259 loss)
I0617 18:38:25.056553 18970 caffe.cpp:318] Loss: 2.30259 I0617 18:38:25.056568 18970 caffe.cpp:330] accuracy = 0.5
————add eps 0.01 sa = 1
———————————————————————————————————————————————————
———add eps 5 sa=121 noise to CIFAR and train and test————————
/home/jungmo/apps/caffe/build/examples/cifar10/convert_cifar_data.bin /home/wanli/cifar10_newdata /home/wanli/alexnet_otherdatast/cifar10_s121e5_data lmdb
/home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_solver.prototxt –gpu all
nvidia-smi ps aux | grep wanli
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_solver.prototxt –gpu all >/home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_s121e5.log &
take about 35 mins with 2 gpu
I0609 16:54:22.311400 16711 solver.cpp:311] Iteration 60000, loss = 0.377767 I0609 16:54:22.311424 16711 solver.cpp:331] Iteration 60000, Testing net (#0) I0609 16:54:23.646196 16767 data_layer.cpp:73] Restarting data prefetching from start. I0609 16:54:23.699950 16711 solver.cpp:398] Test net output #0: accuracy = 0.7345 I0609 16:54:23.699982 16711 solver.cpp:398] Test net output #1: loss = 0.807507 (* 1 = 0.807507 loss)
/home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_train_test.prototxt -weights /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_noisetrain_iter_60000.caffemodel -gpu all -iterations 100
I0609 17:29:51.070551 28223 caffe.cpp:318] Loss: 0.807507 I0609 17:29:51.070565 28223 caffe.cpp:330] accuracy = 0.7345 I0609 17:29:51.070577 28223 caffe.cpp:330] loss = 0.807507 (* 1 = 0.807507 loss)
———————————————————————
—————add eps 2.5 sa=121 noise to CIFAR and train and test————————
/home/jungmo/apps/caffe/build/examples/cifar10/convert_cifar_data.bin /home/wanli/cifar10_newdata /home/wanli/alexnet_otherdatast/cifar10_s121e2_5_data lmdb
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_solver.prototxt –gpu all >/home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_s121e2_5.log &
I0609 18:30:09.807029 28372 solver.cpp:311] Iteration 60000, loss = 0.467952 I0609 18:30:09.807051 28372 solver.cpp:331] Iteration 60000, Testing net (#0) I0609 18:30:11.146687 28381 data_layer.cpp:73] Restarting data prefetching from start. I0609 18:30:11.201294 28372 solver.cpp:398] Test net output #0: accuracy = 0.6092 I0609 18:30:11.201320 28372 solver.cpp:398] Test net output #1: loss = 1.35986 (* 1 = 1.35986 loss)
/home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_train_test.prototxt -weights /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_noisetrain_iter_60000.caffemodel -gpu all -iterations 100
I0609 19:04:43.343973 29201 caffe.cpp:318] Loss: 1.35986 I0609 19:04:43.343986 29201 caffe.cpp:330] accuracy = 0.6092 I0609 19:04:43.344013 29201 caffe.cpp:330] loss = 1.35986 (* 1 = 1.35986 loss)
——————add eps 1 sa=121 noise to CIFAR and train and test——————
/home/jungmo/apps/caffe/build/examples/cifar10/convert_cifar_data.bin /home/wanli/cifar10_newdata /home/wanli/alexnet_otherdatast/cifar10_s121e1_data lmdb
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_solver.prototxt –gpu all >/home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_s121e1.log &
I0609 19:41:56.410487 29271 solver.cpp:311] Iteration 60000, loss = 0.795319 I0609 19:41:56.410526 29271 solver.cpp:331] Iteration 60000, Testing net (#0) I0609 19:41:57.748481 29280 data_layer.cpp:73] Restarting data prefetching from start. I0609 19:41:57.801019 29271 solver.cpp:398] Test net output #0: accuracy = 0.4431 I0609 19:41:57.801046 29271 solver.cpp:398] Test net output #1: loss = 2.0495 (* 1 = 2.0495 loss)
/home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_train_test.prototxt -weights /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_noisetrain_iter_60000.caffemodel -gpu all -iterations 100
I0609 20:28:02.517263 31636 caffe.cpp:318] Loss: 2.0495 I0609 20:28:02.517277 31636 caffe.cpp:330] accuracy = 0.4431 I0609 20:28:02.517302 31636 caffe.cpp:330] loss = 2.0495 (* 1 = 2.0495 loss) ———————————
——————————————add eps 0.5 sa=121 noise to CIFAR and train and test—————— 之前没有处理 加了noise之后的mean 这次作为尝试 检查是否有accuracy的增加
/home/jungmo/apps/caffe/build/examples/cifar10/convert_cifar_data.bin /home/wanli/cifar10_newdata /home/wanli/alexnet_otherdatast/cifar10_s121e0_5_data lmdb
/home/jungmo/apps/caffe/build/tools/compute_image_mean -backend=lmdb
/home/wanli/alexnet_otherdatast/cifar10_s121e0_5_data/cifar10_train_lmdb /home/wanli/alexnet_otherdatast/cifar10_s121e0_5_data/mean.binaryproto
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_solver.prototxt –gpu all >/home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_s121e0_5.log &
I0609 21:21:44.553447 31976 solver.cpp:311] Iteration 60000, loss = 1.09565 I0609 21:21:44.553470 31976 solver.cpp:331] Iteration 60000, Testing net (#0) I0609 21:21:45.889084 31985 data_layer.cpp:73] Restarting data prefetching from start. I0609 21:21:45.943150 31976 solver.cpp:398] Test net output #0: accuracy = 0.3675 I0609 21:21:45.943176 31976 solver.cpp:398] Test net output #1: loss = 2.12235 (* 1 = 2.12235 loss)
/home/jungmo/apps/caffe/build/tools/caffe test -model /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar10_full_train_test.prototxt -weights /home/wanli/alexnet_otherdatast/cifar10_full_caffe/cifar_noisetrain_iter_60000.caffemodel -gpu all -iterations 100
I0612 14:59:45.580353 15212 caffe.cpp:318] Loss: 2.12235 I0612 14:59:45.580371 15212 caffe.cpp:330] accuracy = 0.3675 I0612 14:59:45.580389 15212 caffe.cpp:330] loss = 2.12235 (* 1 = 2.12235 loss)
———
———use the new algorazin adding noise———————————— /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=cifar10_full_train_test.prototxt –weights=cifarfull10_iter_60000.caffemodel –iterations 100 -gpu all
I0605 14:48:49.377022 7858 caffe.cpp:318] Loss: 0.648308 I0605 14:48:49.377035 7858 caffe.cpp:330] accuracy = 0.7841 I0605 14:48:49.377063 7858 caffe.cpp:330] loss = 0.648308 (* 1 = 0.648308 loss)
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_ip1_3.caffemodel –iterations 100 -gpu all
eps 2 lambda 100 I0620 19:37:44.818815 29351 caffe.cpp:318] Loss: 2.50617 I0620 19:37:44.818828 29351 caffe.cpp:330] accuracy = 0.498 I0620 19:37:44.818856 29351 caffe.cpp:330] loss = 2.50617 (* 1 = 2.50617 loss)
eps 20 lambda 1 I0620 19:32:04.321882 29218 caffe.cpp:318] Loss: 2.48277 I0620 19:32:04.321894 29218 caffe.cpp:330] accuracy = 0.4999 I0620 19:32:04.321923 29218 caffe.cpp:330] loss = 2.48277 (* 1 = 2.48277 loss)
eps 20 lambda 0.01 I0620 19:33:55.867460 29283 caffe.cpp:318] Loss: 5.42909 I0620 19:33:55.867473 29283 caffe.cpp:330] accuracy = 0.2505 I0620 19:33:55.867485 29283 caffe.cpp:330] loss = 5.42909 (* 1 = 5.42909 loss)
eps 10 lambda 6 I0620 19:28:52.126260 29095 caffe.cpp:318] Loss: 2.49709 I0620 19:28:52.126273 29095 caffe.cpp:330] accuracy = 0.4979 I0620 19:28:52.126302 29095 caffe.cpp:330] loss = 2.49709 (* 1 = 2.49709 loss)
eps 20 lambda=0.1 I0620 19:18:21.728862 28835 caffe.cpp:318] Loss: 3.10348 I0620 19:18:21.728874 28835 caffe.cpp:330] accuracy = 0.5174 I0620 19:18:21.728884 28835 caffe.cpp:330] loss = 3.10348 (* 1 = 3.10348 loss)
eps 2 lambda=0.1 I0620 19:20:39.098587 28899 caffe.cpp:318] Loss: 7.27391 I0620 19:20:39.098599 28899 caffe.cpp:330] accuracy = 0.219 I0620 19:20:39.098626 28899 caffe.cpp:330] loss = 7.27391 (* 1 = 7.27391 loss)
eps =2 lambda = 1 I0620 19:24:00.419878 28966 caffe.cpp:318] Loss: 2.83118 I0620 19:24:00.419893 28966 caffe.cpp:330] accuracy = 0.4732 I0620 19:24:00.419921 28966 caffe.cpp:330] loss = 2.83118 (* 1 = 2.83118 loss)
nvidia-smi ————— add noise to 10x1024 weight to check ——————— sensity=max(max(raw_weight)) - min(min(raw_weight)); epsilon=2; 单独在 10x1024上加噪音看 ip1_-1.npy
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=cifar10full_train_test.prototxt –weights=wanli_caffe_cifar_ip1-1.caffemodel –iterations 100 -gpu all
sensity=max(max(raw_weight)) - min(min(raw_weight));
epsilon =2 I0625 14:06:59.772109 23215 caffe.cpp:318] Loss: 3.02585 I0625 14:06:59.772122 23215 caffe.cpp:330] accuracy = 0.4269 I0625 14:06:59.772150 23215 caffe.cpp:330] loss = 3.02585 (* 1 = 3.02585 loss)
epsilon = 5; I0625 14:09:33.405725 23339 caffe.cpp:318] Loss: 0.955109 I0625 14:09:33.405740 23339 caffe.cpp:330] accuracy = 0.7016 I0625 14:09:33.405766 23339 caffe.cpp:330] loss = 0.955109 (* 1 = 0.955109 loss)
epsilon =8 I0625 14:08:21.837482 23277 caffe.cpp:318] Loss: 0.814962 I0625 14:08:21.837496 23277 caffe.cpp:330] accuracy = 0.7387 I0625 14:08:21.837524 23277 caffe.cpp:330] loss = 0.814962 (* 1 = 0.814962 loss)
epsilon=10;
I0623 16:17:25.560273 14479 caffe.cpp:318] Loss: 0.7306 I0623 16:17:25.560302 14479 caffe.cpp:330] accuracy = 0.7627 I0623 16:17:25.560330 14479 caffe.cpp:330] loss = 0.7306 (* 1 = 0.7306 loss)
sensity=max(max(raw_weight)) - min(min(raw_weight)); epsilon=20;
I0623 16:13:06.631662 14401 caffe.cpp:318] Loss: 0.683805 I0623 16:13:06.631675 14401 caffe.cpp:330] accuracy = 0.7728 I0623 16:13:06.631685 14401 caffe.cpp:330] loss = 0.683805 (* 1 = 0.683805 loss)
—— no noise SVD———— K=10;
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_ip1_2_5.caffemodel –iterations 100 -gpu all
I0628 15:32:56.373900 3402 caffe.cpp:318] Loss: 0.702712 I0628 15:32:56.373929 3402 caffe.cpp:330] accuracy = 0.7674 I0628 15:32:56.373951 3402 caffe.cpp:330] loss = 0.702712 (* 1 = 0.702712 loss)
———————noise weight first then SVD—————————— epsilon = 5;
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10full_train_test.prototxt –weights=wanli_caffe_cifar_ip1-3_5.caffemodel –iterations 100 -gpu all
I0628 15:21:12.497283 1016 caffe.cpp:318] Loss: 1.17122 I0628 15:21:12.497297 1016 caffe.cpp:330] accuracy = 0.6638 I0628 15:21:12.497326 1016 caffe.cpp:330] loss = 1.17122 (* 1 = 1.17122 loss)
———————noise weight first then KSVD—————————— eps = 5;
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10full_train_test.prototxt –weights=wanli_caffe_cifar_ip1-2_5.caffemodel –iterations 100 -gpu all
K = 8; ksvd I0625 15:01:50.551841 23782 caffe.cpp:318] Loss: 1.43464 I0625 15:01:50.551853 23782 caffe.cpp:330] accuracy = 0.5499 I0625 15:01:50.551880 23782 caffe.cpp:330] loss = 1.43464 (* 1 = 1.43464 loss)
svd I0625 15:34:10.760053 24082 caffe.cpp:318] Loss: 1.40623 I0625 15:34:10.760066 24082 caffe.cpp:330] accuracy = 0.5589 I0625 15:34:10.760092 24082 caffe.cpp:330] loss = 1.40623 (* 1 = 1.40623 loss)
K = 9; I0625 14:54:50.768941 23640 caffe.cpp:318] Loss: 1.32882 I0625 14:54:50.768955 23640 caffe.cpp:330] accuracy = 0.5881 I0625 14:54:50.768982 23640 caffe.cpp:330] loss = 1.32882 (* 1 = 1.32882 loss)
K=10; 1e-6 I0625 15:07:03.543296 23876 caffe.cpp:318] Loss: 1.26001 I0625 15:07:03.543310 23876 caffe.cpp:330] accuracy = 0.6143 I0625 15:07:03.543339 23876 caffe.cpp:330] loss = 1.26001 (* 1 = 1.26001 loss)
1e-9 I0625 15:11:44.421167 23956 caffe.cpp:318] Loss: 1.25073 I0625 15:11:44.421197 23956 caffe.cpp:330] accuracy = 0.6231 I0625 15:11:44.421228 23956 caffe.cpp:330] loss = 1.25073 (* 1 = 1.25073 loss)
—— no noise SVD———— K=10;
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_ip1_2_5.caffemodel –iterations 100 -gpu all
I0628 15:32:56.373900 3402 caffe.cpp:318] Loss: 0.702712 I0628 15:32:56.373929 3402 caffe.cpp:330] accuracy = 0.7674 I0628 15:32:56.373951 3402 caffe.cpp:330] loss = 0.702712 (* 1 = 0.702712 loss)
—————— algorithm p q iteration k= 10 /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_ip1_00.caffemodel –iterations 100 -gpu all
lambda = 0.001 I0704 20:30:31.587730 2055 caffe.cpp:318] Loss: 0.648075 I0704 20:30:31.587743 2055 caffe.cpp:330] accuracy = 0.7841 I0704 20:30:31.587770 2055 caffe.cpp:330] loss = 0.648075 (* 1 = 0.648075 loss)
lambda = 1 I0704 20:45:01.680884 2149 caffe.cpp:318] Loss: 0.81566 I0704 20:45:01.680898 2149 caffe.cpp:330] accuracy = 0.758 I0704 20:45:01.680927 2149 caffe.cpp:330] loss = 0.81566 (* 1 = 0.81566 loss)
lambda = 1, eps = 2, iteration = 1;
I0704 20:56:07.914211 2328 caffe.cpp:318] Loss: 0.854749 I0704 20:56:07.914227 2328 caffe.cpp:330] accuracy = 0.7318 I0704 20:56:07.914240 2328 caffe.cpp:330] loss = 0.854749 (* 1 = 0.854749 loss)
lambda = 1, eps=2, iteration =3; I0704 21:18:40.203644 2510 caffe.cpp:318] Loss: 1.56126 I0704 21:18:40.203658 2510 caffe.cpp:330] accuracy = 0.5472 I0704 21:18:40.203671 2510 caffe.cpp:330] loss = 1.56126 (* 1 = 1.56126 loss)
k=9. eps=2 with algorithm /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_9k2eps.caffemodel –iterations 100 -gpu all accuracy=0.52
no noise just make k=9 and test alternative least square /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=wanli_cifar10_full_train_test.prototxt –weights=wanli_caffe_cifar_k9.caffemodel –iterations 100 -gpu all acc=0.76
MNist=================================== ==—————test on MNIST—————caffe
define mnist_wanli.protxt model file and deploy file: mnist_wanli_solver.protxt
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/MNSIT_wanli/mnist_wanli_solver.prototxt –gpu all >/home/wanli/MNSIT_wanli/mnist_test.log &
I0722 15:43:07.903643 4788 solver.cpp:311] Iteration 60000, loss = 0.259404 I0722 15:43:07.903687 4788 solver.cpp:331] Iteration 60000, Testing net (#0) I0722 15:43:07.989668 4794 data_layer.cpp:73] Restarting data prefetching from start. I0722 15:43:07.990293 4788 solver.cpp:398] Test net output #0: accuracy = 0.9607 I0722 15:43:07.990334 4788 solver.cpp:398] Test net output #1: loss = 0.159888 (* 1 = 0.159888 loss)
I0722 16:01:22.607353 4904 solver.cpp:398] Test net output #0: accuracy = 0.9658 I0722 16:01:22.607388 4904 solver.cpp:398] Test net output #1: loss = 0.14561 (* 1 = 0.14561 loss)
nvida-smi 取和tensor一样的设置,lot size = 600, 100 epochs (也就是60000 iteration
——test on MNIST with noise training data——— modified training data (add noise) and using mnist_wanli_noise.prototxt
./create_mnist_noise.sh # generate lmdv with noise_training data
density = 1 = 255 as pixel
nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/MNSIT_wanli/mnist_wanli_solver.prototxt –gpu all >/home/wanli/MNSIT_wanli/mnist_test_raw.log &
add eps = 0.5, density = 1; nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/MNSIT_wanli/mnist_wanli_solver.prototxt –gpu all >/home/wanli/MNSIT_wanli/mnist_test_data_0.5eps_s1.log &
I0725 20:24:49.031339 5751 data_layer.cpp:73] Restarting data prefetching from start. I0725 20:24:49.031862 5742 solver.cpp:398] Test net output #0: accuracy = 0.1286 I0725 20:24:49.031896 5742 solver.cpp:398] Test net output #1: loss = 2.30599 (* 1 = 2.30599 loss)
add eps = 5, density = 1; nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/MNSIT_wanli/mnist_wanli_solver.prototxt –gpu all >/home/wanli/MNSIT_wanli/mnist_test_data_5eps_s1.log &
I0725 19:03:46.531630 5134 solver.cpp:398] Test net output #0: accuracy = 0.129 I0725 19:03:46.531668 5134 solver.cpp:398] Test net output #1: loss = 2.31161 (* 1 = 2.31161 loss)
add eps = 10, density = 1; nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/MNSIT_wanli/mnist_wanli_solver.prototxt –gpu all >/home/wanli/MNSIT_wanli/mnist_test_data_10eps_s1.log &
Test net output #0: accuracy = 0.129
add eps = 20, density = 1; nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/MNSIT_wanli/mnist_wanli_solver.prototxt –gpu all >/home/wanli/MNSIT_wanli/mnist_test_data_20eps_s1.log &
I0725 19:48:35.548415 5490 solver.cpp:398] Test net output #0: accuracy = 0.1443 I0725 19:48:35.548457 5490 solver.cpp:398] Test net output #1: loss = 2.29588 (* 1 = 2.29588 loss)
add eps = 50, density = 1; nohup /home/jungmo/apps/caffe/build/tools/caffe.bin train –solver /home/wanli/MNSIT_wanli/mnist_wanli_solver.prototxt –gpu all >/home/wanli/MNSIT_wanli/mnist_test_data_50eps_s1.log &
I0725 20:02:08.048678 5583 solver.cpp:398] Test net output #0: accuracy = 0.0831 I0725 20:02:08.048724 5583 solver.cpp:398] Test net output #1: loss = 2.30783 (* 1 = 2.30783 loss)
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=/home/wanli/MNSIT_wanli/mnist_wanli.prototxt –weights=/home/wanli/MNSIT_wanli/mnsit_model_results/data_5eps_s1.caffemodel –iterations 100 -gpu all
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=/home/wanli/MNSIT_wanli/mnist_wanli.prototxt –weights=/home/wanli/MNSIT_wanli/mnsit_model_results/raw_iter_60000.caffemodel –iterations 100 -gpu all
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=/home/wanli/MNSIT_wanli/mnist_wanli_2layer.prototxt –weights=/home/wanli/MNSIT_wanli/mnist_2layer_pure.caffemodel –iterations 100 -gpu all
—————add noise to weight
python /home/wanli/caffe_local/extract.py –model=/home/wanli/MNSIT_wanli/mnist_wanli.prototxt –weights=/home/wanli/MNSIT_wanli/mnsit_model_results/raw_iter_60000.caffemodel –output=mnist_extract
————————— eps = 20 matrix error =
0.0442
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=/home/wanli/MNSIT_wanli/mnist_wanli.prototxt –weights=/home/wanli/MNSIT_wanli/mnist_noise_weight/mnist_weight_20eps_sa.caffemodel –iterations 100 -gpu all
I0725 20:53:36.642285 5906 caffe.cpp:318] Loss: 0.152362 I0725 20:53:36.642302 5906 caffe.cpp:330] accuracy = 0.963 I0725 20:53:36.642330 5906 caffe.cpp:330] loss = 0.152362 (* 1 = 0.152362 loss)
—————— eps = 10 error =
0.0886
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=/home/wanli/MNSIT_wanli/mnist_wanli.prototxt –weights=/home/wanli/MNSIT_wanli/mnist_noise_weight/mnist_weight_10eps_sa.caffemodel –iterations 100 -gpu all
I0725 20:56:35.818883 5957 caffe.cpp:318] Loss: 0.170044 I0725 20:56:35.818894 5957 caffe.cpp:330] accuracy = 0.9559 I0725 20:56:35.818919 5957 caffe.cpp:330] loss = 0.170044 (* 1 = 0.170044 loss)
——————- eps = 5 error =
0.1755
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=/home/wanli/MNSIT_wanli/mnist_wanli.prototxt –weights=/home/wanli/MNSIT_wanli/mnist_noise_weight/mnist_weight_5eps_sa.caffemodel –iterations 100 -gpu all
I0725 20:58:48.742980 6007 caffe.cpp:318] Loss: 0.430706 I0725 20:58:48.742991 6007 caffe.cpp:330] accuracy = 0.854 I0725 20:58:48.743017 6007 caffe.cpp:330] loss = 0.430706 (* 1 = 0.430706 loss)
—————————
———————————算法——————— 第一层不动 784x1000 只处理第二层1000x10
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=/home/wanli/MNSIT_wanli/mnist_wanli.prototxt –weights=/home/wanli/MNSIT_wanli/mnsit_model_results/raw_iter_60000.caffemodel –iterations 100 -gpu all
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=/home/wanli/MNSIT_wanli/mnist_wanli.prototxt –weights=$ ./convert.py /home/wanli/MNSIT_wanli/mnist_wanli.prototxt –caffemodel /home/wanli/MNSIT_wanli/mnist_extract/mnist_noiseweight_-2.caffemodel –data-output-path=tf_output.npy –iterations 100 -gpu all 85%
/home/jungmo/apps/caffe/build/tools/caffe.bin test –model=/home/wanli/MNSIT_wanli/mnist_wanli_2layer.prototxt –weights=/home/wanli/MNSIT_wanli/mnist_2layer_pure.caffemodel –iterations 100 -gpu all
只用算法分开不加噪音,精确度都是96% (.52 & .28)
用了算法加噪音 /ipQ1_10x1000.npy’)/ipP1_10x10.npy’) /home/jungmo/apps/caffe/build/tools/caffe.bin test –model=/home/wanli/MNSIT_wanli/mnist_wanli_2layer.prototxt –weights=/home/wanli/MNSIT_wanli/mnist_2layer_noise1.caffemodel –iterations 100 -gpu all
for q,p 30K,3K accuracy=0.9597 ip2_1.npy err=2.0?
25K,2.5K =0.96 ip2_2.npy err=2.5
10K,1K err=3.1 acc=0.95 ip2_3.npy
1k,100 err=8.43 acc=0.18
5k,500 err=3.61 acc=0.834
用attack中的0.5 盒0.09会慢很多但是更清楚
——————————————直接在 tf的tranin后加噪音 并且用算法 然后在attack——— 原始的acc=0.9212
5k,500 err=1.60 acc=0.896 w2_tf_5k500.npy 直接用tf生成的w2用算法加噪音,在发回去attack
10k,1k err=0.9325 acc=0.9108 w2_tf_10k1k.npy 直接用tf生成的w2用算法加噪音,在发回去attack
验证过了,dp_sgd提取的weight没问题,精确度高 (在local的dp_sgd算法里)
———————研究 private sgd———
1.找到正确的weight的保存 —-通过加少量噪音 attack开始
之前的尝试,加噪音然后再三个地方保存weight attack,结构都为噪音图片:可能是位置不对或者attack结果就是如此